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Algorithms for Brownian first-passage-time estimation
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A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is
considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear
potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or
higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either
outperform or rival Langevin-based (discrete time and continuous space) estimates.
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Brownian dynamics is one of the most widespread models
of temporal evolution for systems displaying stochastic be-
havior [1]. Tts popularity stems no doubt in part from its
simplicity, which allows one to carry out analytical work to
great lengths, but also from its generality, as many dynamical
systems ranging from biological molecules [2] to financial
markets [3] are often well approximated by this model.

In general, however, the solution of most Brownian prob-
lems is not known in closed analytical form, requiring one to
resort to numerical simulations. Almost invariably, such so-
Iutions are obtained by discretizing the Langevin equation in
time and iterating the ensuing difference equation (see, e.g.,
[4]). Here T propose to discretize space instead, leaving the
time continuous. There are many ways of going about this
procedure, and different algorithms can be obtained depend-
ing on the desired context. In this paper I will focus on the
design of algorithms suited for the computation of mean
first-passage times (MFPTs) to a given boundary [5], which
plays a particularly important role in theories of chemical
kinetics [6,7].

To introduce the basic idea behind the present algorithm,
let us focus on the simple one-dimensional problem shown in
Fig. 1. The illustration depicts a typical Brownian trajectory
in a first-passage problem from x=0 to x=2A. This problem
is characterized by an ensemble of continuous trajectories
that start from x=0 at =0 and cross the absorbing boundary
x=2A only once at some time t=7; 7 is thus the first-passage
time of the trajectory. Our goal is to design algorithms that
generate discrete trajectories (thick straight lines in Fig. 1)
that “hop” from site to site, so that their MFPTs to the ab-
sorbing boundary approximate that of the original continuous
problem.

The outline of the derivation is as follows. First, the mean
first-passage time of the continuous Brownian problem will
be recast in terms of two quantities defined on an arbitrary
lattice, namely, conditional mean first-passage times and
splitting probabilities [Eq. (3)]. This intermediate result will
allow us to design lattice algorithms that reproduce the
MFPT of the original Brownian problem by demanding that
their conditional MFPTs and splitting probabilities be equal
to those of the Brownian problem. As these two quantities
are generally not algebraic for nonlinear potentials, they will
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be evaluated based on a linear approximation in the region
delimited by the nearest-neighbor sites [Egs. (5) and (6)]. By
additionally demanding the sites to be uniformly spaced, this
will allow us to write a generic rate equation that can be
generalized to higher dimensions [Egs. (9) and (10)]. Finally,
this rate equation is simulated by standard means, e.g., using
Gillespie’s algorithm [8].

Going back to Fig. 1, we see that the first-passage time of
any Brownian trajectory can be decomposed as a sum of
intermediate times 7(s;,;|s;). Thus, the mean first-passage
time from state s; to state sy in the restricted ensemble of
trajectories that pass through a given time-ordered sequence
of states sV={s;,s,,...,5y} is

N-1

(r(s™) = 20 (7lsialsi)- (1)
i=1

The quantity {7(s;,;|s;)) is the conditional mean first-passage
time from state s; to state s,,;, where the term “conditional”
means that the particle is not allowed to pass through the
other adjacent state [5] [e.g., 7(1]0) is the first-passage time
from s=0 to s=1, conditional on not passing through s=-1].
Note that the individual terms of this sum depend only on the
present and the next states, s; and s;,, respectively. This is
only true for Markovian dynamics, which is assumed to be
the case for the present Brownian problem. The total MFPT
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FIG. 1. (Color online) A continuous Brownian trajectory (wig-
¢gly line) and its discrete counterpart (thick straight lines), illustrat-
ing a first-passage problem from x=0 to the absorbing boundary at
x=2A. The discrete states are labeled s=0, +1, 2, etc., corre-
sponding to x=0, £ A, =2A, etc. For both types of trajectories, the
total first-passage time 7 is the sum of the conditional first-passage
times 7(s;,;|s;) from state s; to the next state s;,,, where conditional
means that the particle did not cross the other adjacent state before
crossing s;,; [5]. The discrete trajectories are constructed, so that
their MFPT (7) is the same as that of the original Brownian trajec-
tories (see text).
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(7) is thus obtained by taking the average of (7(s")) over all
N

permissible sequences of states s, i.e.,
(1=2 2 pls"(r(s")), (2)
N N

where p(sV) is the probability that the particular sequence of
states sV will be realized and the double sum is over all
possible sequences of states that take the particle from its
original position to the absorbing boundary.

Now, for Markovian dynamics, the probability p(s") can
be decomposed as a product of splitting probabilities ¢,
where ¢(s;,|s;) is the probability that a particle originally at
s; will pass through s;,; before passing through the other
adjacent state [e.g., ¢(2|1) is the probability that the particle
originally at s=1 will pass through s=2 before s=0]. This
finally gives the result

N-1 N-1
<7'>=EE (H ¢(Si+1|si))2 <7'(Si+1|5i)>~ (3)
N i=1

No\i=1

The main conclusion from this derivation is that the MFPT
of our Brownian problem is fully specified by the splitting
probabilities and conditional MFPTs defined on an arbitrary
lattice (although we have chosen a uniform lattice anticipat-
ing the development below, this derivation is clearly more
general). It thus follows that any other dynamical system that
has the same ¢(s’|s) and (7(s’|s)) for all adjacent sites s',s
as the original Brownian problem also has the same MFPT
(7). In turn, this suggests that the design of MFPT algorithms
on a lattice should focus on reproducing as closely as pos-
sible these two quantities from the original Brownian prob-
lem.

For one-dimensional Brownian problems, both ¢(s = 1|s)
and (7(s = 1|s)) can be reduced to simple quadrature [5]. An
additional simplification occurs when the particle is sub-
jected to a linear potential and the lattice is uniformly
spaced, in which case two things happen: first, the integrals
reduce to algebraic expressions and, second, the conditional
MFPTs (7(s+1]s)) and (r(s—1|s)) become coincident and
equal to the unconditional mean exit time {7(s)). This second
observation allows us to write down a rate equation govern-
ing the dynamics on the lattice, which can then be general-
ized to higher dimensions.

To be specific, consider a particle evolving according to
the Smoluchowski equation [1]

J
&—It):DVzp+DV (VU p) (4)

and subjected to the linear potential U(x)=ax, where for
simplicity of notation the energy is measured in units of kzT.
For such one-dimensional potentials, the (unconditional)
mean first-passage time [5,9] from s to the adjacent positions
s* 1 is, exactly,

A e®—1
(o) = e 1

(5)

while the splitting probabilities are
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1
P(s = 1|S)=m- (6)

Given (7(s)) and ¢(s = 1]s), a lattice rate equation can be
constructed consistent with these quantities. Indeed, consider
a kinetic scheme for the states s—1,s,s+1 with outgoing
rates from s given by k(s + 1|s). The lifetime (7(s)) in the
state s is then (7(s))"'=k(s—1]|s)+k(s+1]s), while the split-
ting probabilities are ¢(s* 1|s)=(7(s))k(s = 1]|s). Solving
these equations for the rates and using the results for linear
potentials above, we get

Do 1
k(s = 1|S) = =+ TeiaT—]’ (7)

where these rates are to be used in the rate equation

dp(s;t)

- k(s|s + D)p(s + 1;1) + k(s|s = 1)p(s — 1;7)

—[k(s = 1]s) + k(s + 1|s)]p(s;1). (8)

Equations (7) and (8) form the foundation of the proposed
algorithm. For linear potentials in one spatial dimension, the
algorithm yields exact MFPTs. For nonlinear potentials, « is
to be replaced with the slope of the potential at the position
corresponding to site s (local linear approximation). In
higher dimensions, the rate equation (8) can be generalized
by taking the rates along each coordinate to be the one-
dimensional result already derived. Thus, the general form of
our rate equation takes the form

dp(s;1) _ E

” [k(s|s")p(s";1) —k(s'[s)p(s:)],  (9)

s'=n.n.
where the sum is over the nearest neighbors of s, and

DU (s) 1
A eiUz(s)A -1

k(s £ Z|s)= = (10)
In this last equation, Z is a unit basis vector along any of the
coordinates and U._(s) is the partial derivative of the potential
with respect to that coordinate evaluated at the position cor-
responding to the site s. For simplicity, Cartesian coordinates
and square lattices are being assumed (see Fig. 2).

Before discussing how to simulate the above rate equa-
tion, let us check that in the continuum limit we are exactly
solving the Smoluchowski equation [Eq. (4)]. When A is
small in Eq. (10), we have to the leading order

k(siﬁ|s)=%(1 ;%4_...)_

(11)
Substituting these rates into Eq. (9) and mapping finite dif-
ferences into differential operators, we indeed obtain Eq. (4).
This shows that, although our method was designed with
MFPT estimation in mind, the ensuing algorithm actually
generates exact trajectories in the continuum limit, much like
the Langevin algorithm becomes exact when the time step
goes to zero.

The simulation of Egs. (9) and (10) can be performed by
means of Gillespie’s celebrated algorithm [8]. According to
this method, one starts in a given state s and draws an expo-
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FIG. 2. (Color online) Illustration of a two-dimensional imple-
mentation of Egs. (9) and (10). The arrows represent the four out-
going rates from s, k(s +X|s), and k(s + §|s). The boundary sites lie
along the vertical line on the right. The particle “dies” whenever it
visits one such site.

nentially distributed random number ¢ with mean equal to the
reciprocal of the sum of the outgoing rates, i.e.,
() '==_, . k(s"|s). This is the lifetime of the particle
in the state s. A decision is then made as to which site among
the nearest-neighboring states the particle is going next.

This is done by assigning the statistical weight
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FIG. 3. (Color online) Numerical results in one dimension, com-
paring the Langevin algorithm [Eq. (12), squares] with the present
algorithm [Egs. (7) and (8), circles]. Top: Mean first-passage time
from x=0 to x=1 for the linear potential U(x)=—x. The exact result
obtained by analytical integration _[9] is (r)=1 (dashed line).
Bottom: MFPT from x=0 to x=\6 for the harmonic potential
U(x)=x%/2. The “exact” result obtained by numeric quadrature [9]
is (79=24.324 (dashed line). For both problems D=1. The error
bars are of the size of the symbols and hence not shown. For the
Langevin algorithm, the symbols correspond to decreasing values
of the time step Az, from left to right (e.g., Ar=0.5,0.25,0.125,
etc.). For the present algorithm, the symbols correspond to increas-
ing number n of lattice points between the starting point and the
boundary, from left to right (e.g., n=0,1,2,3, etc.). The average
number of force evaluations per trajectory corresponds to the total
number of calls to the function U, (x) divided by the total number of
trajectories generated (10%).
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FIG. 4. (Color online) Numerical results in two dimensions.
Legends and parameters are the same as in Fig. 3. Top: Escape
time from the square with corners (0,0), (1,0), (1,0), and (1,1),
for a free particle starting at (0.5,0.5). The numerically exact
result is (7)=0.073 6714 [9]. Bottom: MFPT to the boundary
x=0.5 for the symmetric double-well potential Ul(x,y)
=[V3(x— 1)2+y2][v‘§(x+ 1)?+y2]. The particle starts at the left mini-
mum (=1,0); the other minimum is at (1,0).

w(s')=k(s"|s)/Z¢_, . k(s'|s) to each neighboring site s’ and
choosing one such site with probability w(s’). The particle
then moves to this chosen site, and the procedure above is
repeated until the particle reaches a boundary site. The sum
of the times ¢ until this criterion is satisfied is then the first-
passage time to the boundary.

The above algorithm has been tested on model problems
in one and two spatial dimensions (Figs. 3 and 4, respec-
tively). For comparison, the overdamped Langevin algorithm
was also simulated [4],

x(t+ Ar) =x(r) = DAr V U(x(r)) + V2DArg. (12)

Here, At is the time step and g is a Gaussian random vector
of zero mean and unit variance. Whenever available, numeri-
cally exact results are also reported to illustrate the correct-
ness of the algorithm in the continuum limit. As force com-
putation is the main bottleneck in most simulations, the main
figure of merit considered was the average number of force
evaluations per trajectory required to achieve a given accu-
racy level. In all test cases considered, the present algorithm
requires considerably fewer force evaluations than the
Langevin algorithm, although further experimentation is
called for in order to make more general conclusions. (It is
interesting to note that, perhaps surprisingly, the more so-
phisticated algorithm of van Gunsteren and Berendsen
[10,11] yields poorer MFPT results than the simple Langevin
algorithm above; indeed, while it more accurately reproduces
Green’s functions with free boundary conditions, the pres-
ence of absorbing boundaries deteriorates its results.)

The algorithm considered above is only one of various
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strategies that can be used based on Eq. (3). A straightfor-
ward improvement is to evaluate the conditional MFPTs ex-
plicitly for piecewise linear potentials, so that the resulting
algorithm would be exact for such potentials (as opposed to
being exact for linear potentials only). This too would result
in algebraic expressions for (7(s’|s)); however, its generali-
zation to higher dimensions would be nontrivial, as in this
case no simple rate equation can be written (rate constants
imply that conditional mean lifetimes are the same regardless
of the outgoing site). Another possibility is to calculate split-
ting probabilities and conditional MFPTs for surfaces (in-
stead of lattice points) surrounding the particle. The advan-
tage in this case is that both space and time are treated
continuously, and the algorithm applies to any number of
dimensions (see, e.g., [12,13] for free-particle implementa-
tions). The main difficulty here, however, is to find
reasonable approximations to such quantities when
U(x) # 0; see Ref. [14] for one proposal.
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In summary, in this contribution a class of algorithms for
the estimation of mean first-passage times in Brownian dy-
namics was introduced. In contrast to traditional discrete-
time (Langevin) methods, these algorithms treat the time
continuously and the space discretely. Perhaps their most dis-
tinguishing feature is that they can yield exact MFPTs re-
gardless of the lattice spacing in some particular cases; for
example, the algorithm considered above yields exact MF-
PTs for linear potentials in one dimension. Numerical results
also suggest that the algorithm outperforms Langevin-based
estimates in two dimensions. Its efficiency in higher dimen-
sions and/or more complex geometries is currently under in-
vestigation.
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